$\qquad$ In Class Notes

A $\qquad$ is a line drawn on a scatter plot close to most of the data points. It can be used to estimate data on a graph.

## Finding a Line of Fit

Ex:) The table shows the number of absences in a school year and the final exam
Notes: scores for several students. (a) Make a scatter plot of the data and draw a line of fit. (b) Write an equation of the line of fit. (c) Interpret the slope and $y$-intercept of the line of fit.

| Absences, <br> $\boldsymbol{x}$ | Final Exam <br> Score, $\boldsymbol{y}$ |
| :---: | :---: |
| 0 | 97 |
| 3 | 88 |
| 2 | 93 |
| 5 | 83 |
| 7 | 73 |
| 9 | 70 |
| 5 | 88 |
| 1 | 94 |
| 9 | 65 |
| 8 | 73 |



OYO:) The table shows the number of practice sessions and the number of errors made on a typing test for several students. (a) Make a scatter plot of the data and draw a line of fit. (b) Write an equation of the line of fit. (c) Interpret the slope and the $y$-intercept of the line of fit.

| Practice Sessions, $\boldsymbol{x}$ | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Errors, $\boldsymbol{y}$ | 4 | 3 | 2 | 1 | 2 | 1 | 0 | 0 |

A line of fit does not need to pass through any of the data points.

$\qquad$ to find a $\qquad$ .

Calculators can give a value $r$, called the $\qquad$
$\qquad$ .

Values of r range from $\qquad$ to $\qquad$ , with values close to $\qquad$ indicating a strong negative correlation, values close to $\qquad$ indicating a strong positive correlation, and the values close to $\qquad$ indicating no correlation.

## Identifying Relationships

Ex:) The table shows the numbers of goals scored and games won by 8 hockey teams. Use a graphing calculator to find an equation of the line of best fit.
Identify and interpret the correlation coefficient.

| Goals, <br> $\boldsymbol{x}$ | Games <br> Won, $\boldsymbol{y}$ |
| :---: | :---: |
| 219 | 39 |
| 249 | 50 |
| 215 | 36 |
| 183 | 28 |
| 282 | 55 |
| 241 | 41 |
| 263 | 50 |
| 256 | 48 |

OYO:) Find an equation of the line of best fit for the data in Example 1.
Notes: Identify and interpret the correlation coefficient.

## Modeling Real Life

Ex:) The table shows the number of bats in a cave each year from 2010 to

| Year, $\boldsymbol{x}$ | Bats <br> (thousands), $\boldsymbol{y}$ |
| :---: | :---: |
| 0 | 327 |
| 1 | 306 |
| 2 | 299 |
| 3 | 270 |
| 4 | 254 |
| 5 | 232 |
| 6 | 215 |
| 7 | 197 |

OYO:) The ordered pairs show amounts $y$ (in inches) of rainfall equivalent to $x$ inches of snow. About how many inches of rainfall are equivalent to 6 inches of snow? Justify your answer.
$(16,1.5) \quad(12,1.3) \quad(18,1.8) \quad(15,1.5) \quad(20,2.1) \quad(23,2.4)$

